Singular $\phi $-Laplacian third-order BVPs with derivative dependance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Positive Solutions for Singular Quasilinear Multipoint BVPs with the First-Order Derivative

The existence of at least three positive solutions for differential equation φp u′ t ′ g t f t, u t , u′ t 0, under one of the following boundary conditions: u 0 ∑m−2 i 1 aiu ξi , φp u ′ 1 ∑m−2 i 1 biφp u ′ ξi or φp u′ 0 ∑m−2 i 1 aiφp u ′ ξi , u 1 ∑m−2 i 1 biu ξi is obtained by using the H. Amann fixed point theorem, where φp s |s|p−2s, p > 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai > 0, bi > 0, 0 <...

متن کامل

Positive solutions of singular p-Laplacian BVPs with sign changing nonlinearity on time scales

We investigate a class of singular m-point p-Laplacian boundary value problem on time scales with the sign changing nonlinearity. By using the well-known Schauder fixed point theorem and upper and lower solutions method, some new existence criteria for positive solutions of the boundary value problem are presented. These results are new even for the corresponding differential (T = R) and differ...

متن کامل

Multiple Positive Solutions of m-Point BVPs for Third-Order p-Laplacian Dynamic Equations on Time Scales

This paper is concerned with the existence of multiple positive solutions for the third-order pLaplacian dynamic equation φp uΔ∇ t ∇ a t f t, u t , uΔ t 0, t ∈ 0, T T with the multipoint boundary conditions uΔ 0 uΔ∇ 0 0, u T B0 ∑m−2 i 1 biu Δ ξi 0, where φp u |u|p−2u with p > 1. Using the fixed point theorem due to Avery and Peterson, we establish the existence criteria of at least three positi...

متن کامل

Positive and dead core solutions of singular Dirichlet boundary value problems with phi-Laplacian

The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet boundary value problem (φ(u)) = λ[ f (t, u, u) + h(t, u, u)], u(0) = u(T ) = A. Here λ is the positive parameter, A > 0, f is singular at the value 0 of its first phase variable and h may be singular at the value 0 of its second phase variable. c © 2007 Elsevier L...

متن کامل

Positive solution for Dirichlet‎ ‎$‎‎p(t)‎$‎-Laplacian BVPs

In this paper we provide‎ ‎existence results for positive solution to‎ ‎Dirichlet p(t)-Laplacian boundary value problems‎. ‎The sublinear and‎ ‎superlinear cases are considerd‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archivum Mathematicum

سال: 2016

ISSN: 0044-8753,1212-5059

DOI: 10.5817/am2016-1-35